4 research outputs found

    Recursive tree traversal dependence analysis

    Get PDF
    While there has been much work done on analyzing and transforming regular programs that operate over linear arrays and dense matrices, comparatively little has been done to try to carry these optimizations over to programs that operate over heap-based data structures using pointers. Previous work has shown that point blocking, a technique similar to loop tiling in regular programs, can help increase the temporal locality of repeated tree traversals. Point blocking, however, has only been shown to work on tree traversals where each traversal is fully independent and would allow parallelization, greatly limiting the types of applications that this transformation could be applied to.^ The purpose of this study is to develop a new framework for analyzing recursive methods that perform traversals over trees, called tree dependence analysis. This analysis translates dependence analysis techniques for regular programs to the irregular space, identifying the structure of dependences within a recursive method that traverses trees. In this study, a dependence test that exploits the dependence structure of such programs is developed, and is shown to be able to prove the legality of several locality— and parallelism-enhancing transformations, including point blocking. In addition, the analysis is extended with a novel path-dependent, conditional analysis to refine the dependence test and prove the legality of transformations for a wider range of algorithms. These analyses are then used to show that several common algorithms that manipulate trees recursively are amenable to several locality— and parallelism-enhancing transformations. This work shows that classical dependence analysis techniques, which have largely been confined to nested loops over array data structures, can be extended and translated to work for complex, recursive programs that operate over pointer-based data structures

    Age-related decline in hippocampal tyrosine phosphatase PTPRO is a mechanistic factor in chemotherapy-related cognitive impairment.

    Get PDF
    Chemotherapy-related cognitive impairment (CRCI) or chemo brain is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro-/- female mice with doxorubicin (DOX) because Ptpro-/- female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro-/- female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro-/- female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI

    Recursive tree traversal dependence analysis

    Get PDF
    While there has been much work done on analyzing and transforming regular programs that operate over linear arrays and dense matrices, comparatively little has been done to try to carry these optimizations over to programs that operate over heap-based data structures using pointers. Previous work has shown that point blocking, a technique similar to loop tiling in regular programs, can help increase the temporal locality of repeated tree traversals. Point blocking, however, has only been shown to work on tree traversals where each traversal is fully independent and would allow parallelization, greatly limiting the types of applications that this transformation could be applied to. The purpose of this study is to develop a new framework for analyzing recursive methods that perform traversals over trees, called tree dependence analysis. This analysis translates dependence analysis techniques for regular programs to the irregular space, identifying the structure of dependences within a recursive method that traverses trees. In this study, a dependence test that exploits the dependence structure of such programs is developed, and is shown to be able to prove the legality of several locality— and parallelism-enhancing transformations, including point blocking. In addition, the analysis is extended with a novel path-dependent, conditional analysis to refine the dependence test and prove the legality of transformations for a wider range of algorithms. These analyses are then used to show that several common algorithms that manipulate trees recursively are amenable to several locality— and parallelism-enhancing transformations. This work shows that classical dependence analysis techniques, which have largely been confined to nested loops over array data structures, can be extended and translated to work for complex, recursive programs that operate over pointer-based data structures

    Electrified Operando-Freezing of Electrocatalytic CO2 Reduction Cells for Cryogenic Electron Microscopy

    No full text
    The ability to freeze and stabilize reaction intermediates in their metastable states and obtain their structural and chemical information with high spatial resolution would be very powerful to unravel the fundamentals in many important materials technologies such as catalysis and batteries. Here, we develop an electrified operando-freezing methodology for the first time to preserve these metastable states under electrochemical reaction conditions for cryogenic electron microscopy (cryo-EM) imaging and spectroscopy. Using Cu catalysts for CO2 reduction as a model system, we observe restructuring of the Cu catalyst in a CO2 atmosphere while the same catalyst remains intact in an air atmosphere at the nanometer scale. Furthermore, we discover the existence of single valance Cu (1+) state and C-O bonding at the electrified liquid-solid interface of the operando-frozen samples, which are key reaction intermediates that traditional ex situ measurements fail to detect. This work highlights our novel technique to study the local structure and chemistry of electrified liquid-solid interfaces, which has broad impact for many electrochemical reactions
    corecore